© 2003 American Chemical Society and American Society of Pharmacognosy, J. Nat. Prod., Larsen np0300636 Supporting Info Page 1

Supporting Information

General Experimental Procedures. NMR spectra were recorded on a Varian 300 spectrometer operating at 300 MHz for ¹H and at 75 MHz for ¹³C NMR spectra, respectively. COSY and NOESY spectra were recorded with standard pulse set up in the Varian program. Chloroform- d_1 and methanol- d_4 were used as solvent and TMS as internal standard. The optical rotation was determined on a Perkin-Elmer 241 polaritmeter. n-Hexane, MeOH, MeCN, CH₂Cl₂, CHCl₃ and DMSO were all of HPLC grade from Merck (Darmstadt, Germany). D-Galactose and glycerol were of highest quality from Fluka (Buchs, Switzerland) and aqueous NaOH (50%) was obtained from J.T. Baker (Netherlands). Open-column chromatography was performed with silica gel 60 (63-200 μ m, Merck). TLC: silica gel 60 F₂₅₄ Al sheets (0.1 mm) (Merck), developed using 10% H₂SO₄ in MeOH followed by heating. Preparative HPLC was carried out using a Merck L-6200 intelligent pump equipped with a Merck L-4200 UV detector. Separations were performed on a RP-C₁₈ column (particle size 5 μ m; 250 × 20 mm i.d., Develosil ODS-HG-5, Nomura Chemical Co., Japan) protected with a guard cartridge $(50 \times 20 \text{ mm i.d.})$ packed with the same material as the column. Analytical HPLC was carried out on a SUMMIT/Dionex HPLC system (Dionex Denmark A/S, Denmark) equipped with a diode array detector (DAD) operating between 200-650 nm. Separations were performed on a LiChrospher 100 RP- C_{18} (particle size 5 μ m; 244 \times 4 mm i.d., Merck) column. High performance anion exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD) was carried out on a Dionex series 300DX ion chromatograph system using a CarboPac PA10 column (250 × 4 mm i.d., Dionex Denmark A/S, Denmark). Eluant 52 mM NaOH and flow rate 1.5 mL/min.

1

Extraction and Isolation: Dried and milled fruits of dog rose (1 kg) were sequentially extracted with n-hexane, CH2Cl2, MeOH and water. The dog rose powder was first submerged in *n*-hexane (2 L) overnight at room temperature, filtered and the powder washed with *n*-hexane (2×500 mL). The combined *n*-hexane solutions were evaporated to dryness under reduced pressure at below 40 °C. The powder was then submerged in CH₂Cl₂, MeOH and water, subsequently, following the same procedure as described above for extraction with *n*-hexane. The resulting *n*-hexane (30 g), CH₂Cl₂ (10 g), MeOH (35 g) and water extracts (125 g) were tested for inhibition of chemotaxis of human peripheral blood neutrophils in vitro. The activity was confined to the CH₂Cl₂ extract which was subjected to silica gel (400 g) open-column chromatography (column dimensions, 5×50 cm), eluting with a stepwise gradient of CH₂Cl₂-MeOH mixtures (100 mL 100:0, 100 mL 99:1, 100 mL 98:2, 150 mL 95:5, 150 mL 90:10, 450 mL 80:20, 950 mL 0:100) to give 20 fractions (fr. 1 to fr. 20, each fraction 100 mL). The individual fractions were concentrated in vacuo (below 40 °C) and tested for inhibition of chemotaxis of human peripheral blood neutrophils in vitro. The activity appeared to be confined to one major constituent in fr. 10-12 as shown by TLC (CH₂Cl₂-MeOH-H₂O, 70:30:3, R_f 0.46) and HPLC-DAD (see below). Fr. 10-12 (850 mg) was further separated by preparative HPLC on a RP-C₁₈ column eluting with a stepwise MeCN-H2O gradient (150 mL 25:75; 150 mL 50:50; 200 mL 60:40; 200 mL 70:30; 200 mL 80:20; 350 mL 90:10 and 400 mL 100:0, column temperature 35 °C, flow rate = 7 mL/min, UV detection at 203 nm, injection volume = 5 mL) to give 14 fractions (fr. 10–12.1 to fr. 10–12.14) of which only fr. 10–12.11 ($t_R \sim 163$ – 179 min, 1145-1255 mL, fraction volume = 110 mL) showed high activity. The active principle in fr. 10-12.11 was found to be confined to one compound that was obtained as a colorless oil (250 mg) and identified as (2S)-1,2-di-O-[(9Z,12Z,15Z)-octadeca-9,12,15trienoyl]-3-*O*- β -D-galactopyranosyl glycerol (1). The purity of the galactolipid 1 (> 98%) was determined by analytical HPLC-DAD using a LiChrospher RP-C₁₈ column and eluting with a MeCN–20% MeCN (aq) gradient (0–10 min (0:100), 10–25 min (from 0:100 to 50:50), 25–55 min (from 50:50 to 100:0), 55–64 min (100:0), gradient linear programmed, column temperature 35 °C, flow rate = 1 mL/min, injection volume = 20 µl, UV detection at 203 nm, t_R (compound 1) = 54 min). The structure of 1 was identified from the ¹H- and ¹³C-NMR data (see Table I and Table II) and $[\alpha]_D ([\alpha]_D^{26} -3.0^\circ (c \ 0.4 \ CHCl_3))$ and by comparison with literature data.¹⁻³ The structure of 1 was further confirmed by basic methanolysis and acidic hydrolysis. Basic methanolysis² yielded methyl linolenate as the only methyl ester as shown by GC-MS, whereas acid hydrolysis in 4 N HCl afforded D-galactose and glycerol as shown by HPAEC-PAD.

3

© 2003 American Chemical Society and American Society of Pharmacognosy, J. Nat. Prod., Larsen np0300636 Supporting Info Page 4

Н	$\delta_{\rm H}$ (multiplicity, J in Hz) in CDCl ₃	$\delta_{\rm H}$ (multiplicity, J in Hz) in CD ₃ OD	
ľ	4.24 (<i>d</i> , 6.8)	4.23 (d, 6.6)	
2'	3.63 (<i>m</i>)	3.51 (dd, 6.6, 9.7)	
3'	3.54 (<i>m</i>)	3.45 (<i>dd</i> , 2.1, 9.7)	
4'	3.91 (m)	3.84 (dd, 0.5, 2.1)	
5'	3.58 (m)	3.48 (m)	
6'a	ſ	3.73 (dd, 6.6, 12.0)	
6'b	$\begin{cases} 3.88 \ (m) \end{cases}$	3.75 (<i>dd</i> , 4.4, 12.0)	
la	4.22 (dd, 6.8, 12.0)	4.22 (dd, 6.9, 12.0)	
lb	4.40 (<i>dd</i> , 2.0, 12,0)	4.43 (br d, 12.0)	
2	5.28 (m)	5.27 (m)	
3a	3.72 (dd, 6.0, 11.0)	3.71 (dd, 5.4, 11.0)	
3b	3.99 (m)	3.98 (dd, 5.4, 10.8)	
2",2""	2.32 (br t, 7.0)	2.32 (br t, 7.0)	
3",3"'	1.60 (<i>m</i>)	1.60 (<i>m</i>)	
4"-7", 4""-7""	1.32 (<i>m</i>)	1.35 (<i>m</i>)	
8",17",8"",17"	2.08 (<i>m</i>)	2.08 (<i>m</i>)	
9",10",12",13'',15'',16'' 9"',10''',12"',13''',15''',16'''	5.36 (<i>m</i>)	5.35 (m)	
11",14", 11", 14"	2.81 (br t, 6.8)	2.82 (br t, 6.8)	
18", 18""	0.97 (t, 7.5)	0.98 (t, 7.5)	

Table I. ¹H-NMR spectral data (300 MHz, CDCl₃ and CD₃OD, δ -values in ppm) for compound 1.

Abbreviations for multiplicity: d = doublet, dd = double doublet, m = multiplet, t = triplet. br = broad. Assignments based on ¹H-¹H-COSY and ¹H-¹H-NOESY NMR experiments.

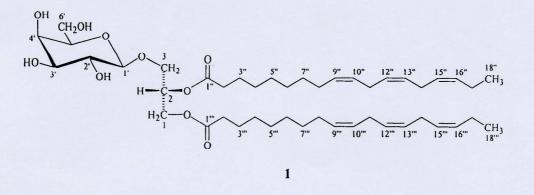

Assignments	Multiplicity*	$\delta_{\rm C}$ (CDCl ₃)	$\delta_{\rm C}$ (CD ₃ OD)
C-1'	d.	104.3	106.3
C-2'	d	71.6	73.3
C-3'	d	73.7	75.7
C-4'	d	69.5	71.1
C-5'	d	74.8	77.7
C-6'	t	62.4	63.3
C-1	t	63.1	64.9
C-2	d	70.4	72.7
C-3	t	68.4	69.6
C-1", C-1"	5	174.1, 173.7	176.1, 175.8
C-2", C-2""	t	34.5, 34.3	36.0, 35.8
C-3", C-3"	t	25.1ª	26.8ª
C-4", C-4""	. 1	29.8 ^b	31.6 ^b
C-5'', C-5'''	t	29.5 ^b	31.2 ^b
C-6'', C-6'''	t	29.4 ^b	31.1 ^b
C-7", C-7"	t	29.3 ^b	31.0 ^b
C-8'', C-8'''	t	27.4	29.0
C-9'', C-9'''	d	132.2°	133.8°
C-10", C-10"	d	130.4°	132.1°
C-11", C-11"	t	25.9 ^a	27.4ª
C-12", C-12"	d	128.6°	130.2°
C-13'', C-13'''	d	128.5°	130.2°
C-14", C-14"	t	25.8ª	27.3ª
C-15", C-15"	d	128.0°	129.9°
C-16'', C-16'''	d	127.3°	129.2°
C-17", C-17""	t	20.8	22.3
C-18'', C-18'''	9	14.5	15.5

Table II. ¹³C-NMR spectral data (75 MHz, CDCl₃ and CD₃OD, δ -values in ppm) for compound 1.

*Multiplicity determined by DEPT and HETCOR-NMR experiments. Abbreviations for multiplicity: s = singlet, d = doublet, t = triplet, q = quartet.^{a, b, c} In the same column: These assignments may be interchanged.

.

© 2003 American Chemical Society and American Society of Pharmacognosy, J. Nat. Prod., Larsen np0300636 Supporting Info Page 6

References

. . .

1

• # ..

- 1. Wegner, C.; Hamburger, M.; Kunert, O.; Haslinger, E. Helv. Chim. Acta 2000, 83, 1454–1464.
- Murakami, A.; Nakamura, Y.; Koshimizu, K.; Ohigashi, H. J. Agric. Food Chem. 1995, 43, 2779–2783.
- 3. Olugbade, T. A.; Adesanya, S. A. Phytochemistry 2000, 54, 867-870.